Strategies for extracting structural information from 2D IR spectroscopy of amyloid: application to islet amyloid polypeptide.
نویسندگان
چکیده
The 37-residue human islet amyloid polypeptide (hIAPP or amylin) self-assembles into fibers, the assembly of which has been associated with the disease mechanism of type II diabetes. Infrared spectroscopy in conjunction with isotope labeling is proving to be a powerful tool for studying the aggregation process of hIAPP and other amyloid forming proteins with residue specific structure and kinetic information, but the relationship between the spectroscopic observables and the structure is not fully established. We report a detailed analysis of the linear and 2D IR spectra of hIAPP fibers isotope labeled at seven different residue positions. The features of the 2D IR spectra, including the frequencies, linewidths, intensities, and polarization dependence of the diagonal and cross-peaks, rely heavily on the position of the isotope labeled residue. In order to understand how these measured parameters depend on fiber secondary and tertiary structure, we have simulated 1D and 2D IR spectra utilizing idealized structural models in addition to a recently published solid-state NMR based model of the amyloid fibril. The analysis provides a more rigorous foundation for interpreting the infrared spectra of amyloids. In addition, we demonstrate that 2D IR spectra can be employed to distinguish between residues in beta-sheets versus those in turn regions, and that transitional residues between secondary structures can be identified by the suppression of their cross-peaks in 2D IR spectra. This latter approach is not limited to amyloid fibrils and will be generally useful in identifying regions of secondary structure in proteins using 2D IR spectroscopy and isotope labeling.
منابع مشابه
Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide.
The capability of 2D IR spectroscopy to elucidate time-evolving structures is enhanced by a programmable mid-IR pulse shaper that greatly improves the ease, speed, and accuracy of data collection. Traditional ways of collecting 2D IR spectra are difficult to implement, cause distorted peak shapes, and result in poor time resolution and/or phase problems. We report on several methods for collect...
متن کاملIslet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...
متن کاملTwo-dimensional infrared spectroscopy reveals the complex behavior of an amyloid fibril inhibitor
Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid forma...
متن کاملInhibitory effects of choline-O-sulfate on amyloid formation of human islet amyloid polypeptide
Choline-O-sulfate (2-(trimethylammonio)ethyl sulfate, COS) is a naturally occurring osmolyte that is synthesized by plants, lichens, algae, fungi, and several bacterial species. We examined the inhibitory effects of COS on amyloid formation of the human islet amyloid polypeptide (hIAPP or amylin) using a thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy and transmission ele...
متن کاملHow to Get Insight into Amyloid Structure and Formation from Infrared Spectroscopy
There is an enormous amount of interest in the structures and formation mechanisms of amyloid fibers. In this Perspective, we review the most common structural motifs of amyloid fibers and discuss how infrared spectroscopy and isotope labeling can be used to identify their structures and aggregation kinetics. We present three specific strategies, site-specific labeling to obtain residue-by-resi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 47 شماره
صفحات -
تاریخ انتشار 2009